Dieudonné module theory, part II: the classical theory

Alan Koch

Agnes Scott College

May 24, 2016

Alan Koch (Agnes Scott College)

Outline

Overview

2 Witt Vectors

- 3 Dieudonné Modules
- Some Examples

5 Duality

Want More?

イロト イ理ト イヨト イヨト

Pick a prime p > 2.

Recall: it is unreasonable to think that every finite abelian Hopf algebra H of p-power rank over an \mathbb{F}_p -algebra R can be classified with Dieudonné modules.

Last time, we focused on Hopf algebras with a nice coalgebra structure.

This time, we will make assumptions on both *R* and *H*.

The assumptions on R are very restrictive, and the ones on H are more palatable.

A (10) A (10)

Throughout this talk, let R = k be a perfect field of characterisic p.

Any finite k-Hopf algebra H can be written as

$$H \cong H_{r,r} \otimes H_{r,\ell} \otimes H_{\ell,r} \otimes H_{\ell,\ell}$$

where

- $H_{r,r}$ and $H_{r,r}^*$ are both reduced *k*-algebras.
- $H_{r,\ell}$ is a reduced and $H_{r,\ell}^*$ is a local *k*-algebra.
- $H_{\ell,r}$ is a local and $H_{r,\ell}^*$ is a reduced *k*-algebra.
- $H_{\ell,\ell}$ and $H^*_{\ell,\ell}$ are both local *k*-algebras.

If $p \nmid \dim_k H$ then $H = H_{r,r}$.

.

$H \cong H_{r,r} \otimes H_{r,\ell} \otimes H_{\ell,r} \otimes H_{\ell,\ell}$

Reduced *k*-Hopf algebras are "classified": they correspond to finite groups upon which $Gal(\overline{k}/k)$ acts continuously.

Then $H_{r,r}$ and $H_{r,\ell}$ are classified, and by duality so is $H_{\ell,r}$.

Thus, the most mysterious Hopf algebras are the ones of the form $H_{\ell,\ell}$.

We will call these "local-local" and assume that all Hopf algebras in this talk are finite, abelian, and local-local over the perfect field k.

If H is local-local, then a result of Waterhouse is that H is a "truncated polynomial algebra", i.e.,

$$H \cong k[t_1,\ldots,t_r]/(t_1^{p^{n_1}},\ldots,t_r^{p^{n_r}}),$$

so the algebra structure isn't terrible.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Suggested readings

- M. Demazure and P. Gabriel, Groupes Algébriques Tome 1. Good news: partially translated into English as Introduction to Algebraic Geometry and Algebraic Groups. Bad news: not the part you need (chapter 5).
- A. Grothendieck, Groupes de Barsotti-Tate et Cristaux de Dieudonné.
 Explicit connection between Dieudonné modules and Hopf algebras.
- T. Oda, The first de Rham cohomology group and Dieudonné modules. The section on Dieudonné modules gave me my first explicit examples.
- R. Pink, Finite group schemes,

https://people.math.ethz.ch/ pink/ftp/FGS/CompleteNotes.pdf. Good intro to Dieudonné modules with proofs (group scheme point of view).

イロト イ団ト イヨト イヨト

What is a k-Hopf algebra?

It is a *k*-algebra and a *k*-coalgebra with compatible structures.

A Dieudonné module is a single module (over a ring TBD) which encodes both structures.

In Monday's talk, the coalgebra structure was assumed, and the algebra structure was encoded by the action of F on $D_*(H)$.

Overview

2 Witt Vectors

- 3 Dieudonné Modules
- Some Examples

5 Duality

イロト イ理ト イヨト イヨト

Witt polynomials

For each $n \in \mathbb{Z}^{\geq 0}$, define $\Phi_n \in \mathbb{Z}[Z_0, \ldots, Z_n]$ by

$$\Phi_n(Z_0,\ldots,Z_n) = Z_0^{p^n} + \rho Z_1^{p^{n-1}} + \cdots + \rho^n Z_n$$

Note: Φ_n depends on the choice of prime *p*, which we assume to be "our" *p*.

Define polynomials $S_n, P_n \in \mathbb{Z}[X_0, \dots, X_n; Y_0, \dots, Y_n]$ implicitly by

$$\Phi_n(S_0,\ldots,S_n) = \Phi_n(X_0,\ldots,X_n) + \Phi_n(Y_0,\ldots,Y_n)$$

$$\Phi_n(P_0,\ldots,P_n) = \Phi_n(X_0,\ldots,X_n)\Phi_n(Y_0,\ldots,Y_n)$$

Fact. Yes, the coefficients are all integers.

$$\Phi_n(Z_0,...,Z_n) = Z_0^{p^n} + p Z_1^{p^{n-1}} + \dots + p^n Z_n$$

$$\Phi_n(S_0,...,S_n) = \Phi_n(X_0,...,X_n) + \Phi_n(Y_0,...,Y_n)$$

$$\Phi_n(P_0,...,P_n) = \Phi_n(X_0,...,X_n) \Phi_n(Y_0,...,Y_n)$$

Example (low hanging fruit)

$$\Phi_0(Z_0) = Z_0$$

 $S_0(X_0; Y_0) = X_0 + Y_0$
 $P_0(X_0, Y_0) = X_0 Y_0$

Exercise 1. Prove:

$$S_1((X_0, X_1); (Y_0, Y_1)) = X_1 + Y_1 - \frac{1}{p} \sum_{i=1}^{p-1} {p \choose i} X_0^i Y_0^{p-i}$$

$$P_1((X_0, X_1); (Y_0, Y_1)) = X_0^p Y_1 + X_1^p Y_0 + p X_1 Y_1.$$

2

イロト イ団ト イヨト イヨ

Let $W(\mathbb{Z}) = (w_0, w_1, w_2, ...), w_i \in \mathbb{Z}$ for all *i*. Define addition and multiplication on $W(\mathbb{Z})$ by

$$(w_0, w_1, \dots) +_W (x_0, x_1, \dots) = (S_0(w_0; x_0), S_1((w_0, w_1); (x_0, x_1)), \dots))$$

$$(w_0, w_1, \dots) \cdot_W (x_0, x_1, \dots) = (P_0(w_0; x_0), P_1((w_0, x_1); (w_0, x_1)), \dots))$$

These operations make $W(\mathbb{Z})$ into a commutative ring.

Actually, W(-) is a \mathbb{Z} -*ring scheme*, meaning that for all \mathbb{Z} -algebras A, W(A) is a ring.

In particular, set W = W(k) and call this the ring of Witt vectors with coefficients in k (or "Witt vectors" for short).

• □ ▶ • @ ▶ • ■ ▶ • ■ ▶ •

Properties of Witt vectors. Show each of the following:

Exercise 2. *W* is a ring of characteristic zero.

Exercise 3. *W* is an integral domain.

Exercise 4. (1, 0, 0, ...) is the multiplicative identity of *W*.

Exercise 5. $W(\mathbb{F}_{p}) \cong \mathbb{Z}_{p}$.

Exercise 6. $W(\mathbb{F}_{p^n})$ is the unramified extension of \mathbb{Z}_p of degree *n*.

Exercise 7. The element $(0, 1, 0, 0...) \in W$ acts as mult. by p.

Exercise 8. $p^n W$ is an ideal of W.

Exercise 9. Let $W_n = (w_0, w_1, ..., w_{n-1})$. Then W_n is a ring with operations induced from W.

Exercise 10. $W/p^n W \cong W_n$. In particular, $W_0 \cong k$.

Of particular importance will be two operators F, V on W given by

$$F(w_0, w_1, w_2, \dots) = (w_0^{p}, w_1^{p}, w_2^{p}, \dots)$$
$$V(w_0, w_1, w_2, \dots) = (0, w_0, w_1, \dots)$$

F is called the *Frobenius* and *V* is called the *Verschiebung*. Show each of the following:

Exercise 11. FV = VF = p (multiplication by p).

Exercise 12. F, V both act freely on W, only F acts transitively.

Exercise 13. If $w \in p^n W$ then Fw, $Vw \in p^n W$. Thus, F and V make sense on W_n as well.

Exercise 14. W_n is annihilated by V^{n+1} .

Exercise 15. Any $w = (w_0, w_1, w_2, ...) \in W$ decomposes as

$$(w_0, w_1, w_2, \dots) = \sum_{i=0}^{\infty} \rho^i (w_i^{\rho^{-i}}, 0, 0, \dots).$$

Overview

Witt Vectors

- Oieudonné Modules
- Some Examples

5 Duality

Want More?

Now let w^{σ} be the Frobenius on $w \in W$ (invertible since k is perfect).

Let E = W[F, V] be the ring of polynomials with

$$FV = VF = p, Fw = w^{\sigma}F, wV = Vw^{\sigma}; w \in W$$

We call *E* the *Dieudonné ring*.

Note that *E* is commutative if and only if $k = \mathbb{F}_{p}$.

One more construction

Let us view W_n as a group scheme (as opposed to the ring $W_n(k)$).

Let W_n^m be the m^{th} Frobenius kernel of the group scheme W_n , i.e. for any *k*-algebra *A*,

$$W_n^m(A) = \{(a_0, a_1, \dots, a_{n-1}) : a_i \in A, a_i^{p^m} = 0 \text{ for all } 0 \le i \le n-1\}.$$

Some properties of W_n^m :

- Clearly, $F: W_n \to W_n$ restricts to $F: W_n^m \to W_n^m$.
- Also, $V: W_n \to W_n$ restricts to $V: W_n^m \to W_n^m$.
- For each *k*-algebra *A*, *W*(*k*) acts on *W*(*A*) through the algebra structure map *k* → *A*.
- Every local-local Hopf algebra represents a subgroup scheme of some (W^m_n)^r.

There are maps $\iota: W_n^m \hookrightarrow W_n^{m+1}$ (inclusion) and $\nu: W_n^m \hookrightarrow W_{n+1}^m$ (induced by *V*) such that

Then $\{W_n^m\}$ is a direct system (where the partial ordering $(n, m) \le (n', m')$ is given by the conditions $n \le n', m \le m'$).

Let

$$\widehat{\boldsymbol{W}}=\varinjlim_{m,n}\boldsymbol{W}_n^m.$$

(Not standard notation.)

A (10) A (10)

Let H be a local-local Hopf algebra. Define

$$D_*(H) = \operatorname{Hom}_{k\text{-}gr}(\widehat{W}, \operatorname{Spec}(H)).$$

The actions of *F* and *V* on \widehat{W} induces actions on $D_*(H)$, as does the action of W(k).

Thus, $D_*(H)$ is an *E*-module.

Furthermore, $D_*(-)$ is a covariant functor, despite the fact this is referred to as "contravariant Dieudonné module theory".

$$D_*(H) = \operatorname{Hom}_{k\text{-}gr}(\widehat{W}, \operatorname{Spec}(H)).$$

Properties of D_* :

- $D_*(H)$ is killed by some power of F and V.
- $D_*(H)$ is finite length as a *W*-module.
- length_W $D_*(H) = \log_p \dim_k H.$
- $D_*(H_1 \otimes H_2) \cong D_*(H_1) \times D_*(H_2)$. Note Spec $(H_1 \otimes H_2) \cong \text{Spec}(H_1) \times \text{Spec}(H_2)$.

Theorem (Main result in Dieudonné module theory)

D_{*} induces a categorical equivalence

 $\left\{\begin{array}{c} p\text{-}power rank\\ local-local\\ k\text{-Hopf algebras}\end{array}\right\} \longrightarrow \left\{\begin{array}{c} E\text{-}modules\\ of finite length over W(k)\\ killed by a power of F and V\end{array}\right\}.$

We call E-modules satisfying the above Dieudonné modules.

 $\left\{ \begin{array}{c} E \text{-modules} \\ \text{of finite length over } W(k) \\ \text{killed by a power of } F \text{ and } V \end{array} \right\} = \{\text{``Dieudonné modules''}\}$

This is not everyone's definition.

Dieudonné modules can also be used to describe

- *p*-power rank Hopf algebras (local, separable).
- p-divisible groups
- graded Hopf algebras
- primitively generated Hopf algebras
- a slew of other things

 $\left\{ \begin{array}{c} E \text{-modules} \\ \text{of finite length over } W(k) \\ \text{killed by a power of } F \text{ and } V \end{array} \right\} = \{\text{``Dieudonné modules''}\}$

Some literature will describe a Dieudonné module as a triple (M, F, V) where

- *M* is a finite length *W*(*k*)-module
- $F: M \rightarrow M$ is a nilpotent σ -semilinear map
- $V: M \to M$ is a nilpotent σ^{-1} -semilinear map.

This is just a different way to describe the same thing.

$$D_*(H) = \operatorname{Hom}_{k\text{-}gr}\left(\widehat{W}, \operatorname{Spec}(H)\right).$$

Each W_n^m is an affine group scheme, represented by

$$H_{m,n} = k[t_0, \ldots, t_{n-1}]/(t_1^{p^m}, t_2^{p^m}, \ldots, t_{n-1}^{p^m})$$

with comultiplications induced from Witt vector addition:

$$\Delta(t_i) = S_i((t_0 \otimes 1, \ldots, t_i \otimes 1); (1 \otimes t_0, \ldots, 1 \otimes t_i)).$$

In theory we could possibly write something like

$$D_*(H) = \operatorname{Hom}_{k\operatorname{-Hopf}}(H, \varprojlim_{m,n} H_{m,n}).$$

However, I have never found this to be helpful.

No wait, come back

Suppose we are given a Dieudonné module. What is the corresponding Hopf algebra?

Suppose $V^{N+1}M = 0$. Let $H = k[\{T_m : m \in M\}]$ subject to the relations

$$T_{Fm} = (T_m)^p$$

$$T_{m_1+m_2} = S_N((T_{V^N m_1}, \dots, T_{V m_1}, T_{m_1}); (T_{V^N m_2}, \dots, T_{V m_2}, T_{m_2})$$

$$T_{(w_0, w_1, \dots)m} = P_N((w_0^{p^{-N}}, \dots, w_N^{p^{-N}}); (T_{V^N m}, \dots, T_{V m}, T_m),$$

$$m, m_1, m_2 \in M, \ (w_0, w_1, \dots) \in W.$$

Define $\Delta: H \to H \otimes H$ by

$$\Delta(T_m) = S_N((T_{V^Nm} \otimes 1, T_{V^{N-1}m} \otimes 1, \ldots, T_m \otimes 1); (1 \otimes T_{V^Nm}, \ldots, 1 \otimes T_m)).$$

Then *H* is a local-local *k*-Hopf algebra.

The gist, part 2

$$T_{Fm} = (T_m)^p$$

$$T_{m_1+m_2} = S_N((T_{V^N m_1}, \dots, T_{V m_1}, T_{m_1}); (T_{V^N m_2}, \dots, T_{V m_2}, T_{m_2})$$

$$T_{wm} = P_N((w_0^{p^{-N}}, \dots, w_N^{p^{-N}}); (T_{V^N m}, \dots, T_{V m}, T_m)$$

$$\Delta(T_m) = S_N((T_{V^N m} \otimes 1, \dots, T_m \otimes 1); (1 \otimes T_{V^N m}, \dots, 1 \otimes T_m)).$$

The action of F describes the (interesting) algebra structure. The action of V describes the coalgebra structure.

Exercise 16. Show that the *N* above need not be minimal.

Exercise 17. Let *M* be a Dieudonné module. Show that $T_0 = 0$.

Overview

2 Witt Vectors

- 3 Dieudonné Modules
- 4 Some Examples

5 Duality

Want More?

< ロ > < 同 > < 回 > < 回 >

$$T_{Fm} = (T_m)^p$$

$$T_{m_1+m_2} = S_N((T_{V^N m_1}, \dots, T_{V m_1}, T_{m_1}); (T_{V^N m_2}, \dots, T_{V m_2}, T_{m_2})$$

$$T_{wm} = P_N((w_0^{p^{-N}}, \dots, w_N^{p^{-N}}); (T_{V^N m}, \dots, T_{V m}, T_m)$$

$$\Delta(T_m) = S_N((T_{V^N m} \otimes 1, \dots, T_m \otimes 1); (1 \otimes T_{V^N m}, \dots, 1 \otimes T_m)).$$

Example

The simplest possible (nontrivial) *E*-module is a *k*-vector space *M* of dimension 1 with *F* and *V* acting trivially.

In other words, M = E/E(F, V). In particular, N = 1. Let M have k-basis $\{x\}$, and let H be the Hopf algebra with $D_*(H) = M$.

Exercise 18. Prove *H* is generated as a *k*-algebra by *t*, where $t = T_x$.

Since

$$t^{\rho}=\left(T_{x}\right) ^{\rho}=T_{Fx}=T_{0}=0,$$

we have $H = k[t]/(t^{p})$. Also, by the formulas above, *t* is primitive.

Primitively generated flashback

Suppose *H* is primitively generated (and local-local), and let $M = D_*(H)$.

Since

$$\Delta(T_m) = S_N((T_{V^Nm} \otimes 1, \ldots, T_m \otimes 1); (1 \otimes T_{V^Nm}, \ldots, 1 \otimes T_m))$$

it follows that we may take N = 0.

Thus VM = 0, hence M can be viewed as a module over k[F] with

$$T_{Fm} = (T_m)^p$$

 $T_{m_1+m_2} = T_{m_1} + T_{m_2}$
 $T_{wm} = w_0 T_m.$

In this case, it's the same module as yesterday.

Example

Let $M = E/(F^m, V^n) = D_*(H)$.

Exercise 19. What is *pM*?

Exercise 20. Exhibit a k-basis for M.

Exercise 21. Prove that

$$H = k[t_1,\ldots,t_n]/(t_1^{p^m},\ldots,t_n^{p^m})$$

Exercise 22. Write out the comultiplication (in terms of Witt vector addition).

Exercise 23. Show that $\text{Spec}(H) = W_n^m$.

A D M A A A M M

Let $H = k[t]/(t^{p^5})$ with

$$\Delta(t) = t \otimes 1 + 1 \otimes t + \sum_{i=1}^{p-1} \frac{1}{i!(p-i)!} t^{p^3i} \otimes t_1^{p^3(p-i)}.$$

What is $D_*(H)$? Let $M = D_*(H)$, and suppose there is an $x \in M$ such that $t = T_x$. Then

$$0 = t^{p^5} = (T_x)^{p^5} = T_{F^5 x}$$

so $F^5 x = 0$, from which it follows that $F^5 M = 0$ but $F^4 M \neq 0$. Also,

$$\Delta(t) = S_1(((T_x)^{p^3} \otimes 1, T_x \otimes 1); (1 \otimes (T_x)^{p^3}, 1 \otimes T_x))$$

= $S_1(T_{F^3x} \otimes 1, T_x \otimes 1); (1 \otimes T_{F^3x}, 1 \otimes T_x)$

Then N = 1 (i.e., $V^2 M = 0$) and $Vm = F^3 m$. Thus,

$$M \cong E/E(F^5, F^3 - V, V^2) = E/E(F^5, F^3 - V).$$

This can be confirmed by working backwards.

Let
$$H = k[t_1, t_2]/(t_1^{p^2}, t_2^{p^2})$$
 with
 $\Delta(t_1) = t_1 \otimes 1 + 1 \otimes t_1$
 $\Delta(t_1) = t_2 \otimes 1 + 1 \otimes t_2 + \sum_{i=1}^{p-1} \frac{1}{i!(p-i)!} t_1^{pi} \otimes t_1^{p(p-i)}.$

What is $D_*(H)$? Let $M = D_*(H)$, and suppose $x, y \in M$ satisfy $t_1 = T_x$, $t_2 = T_y$. Clearly, $F^2x = F^2y = 0$ and

$$\begin{aligned} \Delta(t_1) &= S_0(T_x \otimes 1; 1 \otimes T_x) \\ &= S_1((0 \otimes 1, T_x \otimes 1); (1 \otimes 0, 1 \otimes T_x)) \\ \Delta(t_2) &= S_1(((T_x)^p \otimes 1, T_y \otimes 1); (1 \otimes (T_x)^p, 1 \otimes T_y)) \\ &= S_1((T_{F_x} \otimes 1, T_y \otimes 1); (1 \otimes T_{F_x}, 1 \otimes T_y)). \end{aligned}$$

Thus Vx = 0 and Vy = Fx. So,

$$M = Ex + Ey, F^2M = V^2M = 0, Vx = 0, Fx = Vy$$

Write out the Hopf algebra for each of the following. Be as explicit as you can.

Exercise 24. $M = E/(F^2, F - V)$

Exercise 25. $M = E/E(F^2, V^2)$

Exercise 26. $M = E/E(F^2, p, V^2)$

Exercise 27. M = Ex + Ey, $F^4x = 0$, $F^3y = 0$, $Vx = F^2y$, $V^2x = 0$, Vy = 0.

More exercises!

Find the Dieudonné module for each of the following.

Exercise 28. $H = k[t]/(t^{p^4})$, *t* primitive.

Exercise 29. $H = k[t_1, t_2]/(t_1^{p^3}, t_2^{p^2}), t_1$ primitive and

$$\Delta(t_2) = t_2 \otimes 1 + 1 \otimes t_2 + \sum_{i=1}^{p-1} \frac{1}{i!(p-i)!} t_1^{pi} \otimes t_1^{p(p-i)}$$

Exercise 30. $H = k[t_1, t_2]/(t_1^{p^3}, t_2^{p^2}), t_1$ primitive and

$$\Delta(t_2) = t_2 \otimes 1 + 1 \otimes t_2 + \sum_{i=1}^{p-1} \frac{1}{i!(p-i)!} t_1^{p^2i} \otimes t_1^{p^2(p-i)}$$

・ 回 ト ・ ヨ ト ・ ヨ ト …

Overview

2 Witt Vectors

- 3 Dieudonné Modules
- Some Examples

5 Duality

Want More?

< ロ > < 同 > < 回 > < 回 >

Very nicely, with the proper definitions.

For an *E*-module *M* we define its dual M^* to be

$$M^* = \operatorname{Hom}_W(M, W[p^{-1}]/W)$$

This is an *E*-module, where *F* and *V* act on $\phi : M \to W[p^{-1}]/W$ as follows:

$$(F\phi)(m) = (\phi(Vm))^{\sigma}$$
$$(V\phi)(m) = (\phi(Fm))^{\sigma^{-1}}$$

Note. The σ , σ^{-1} make $F\phi$, $V\phi$ into maps which are *W*-linear.

< ロ > < 同 > < 回 > < 回 >

Properties

- If *M* is a Dieudonné module, so is *M**.
- (E/E(Fⁿ, V^m))* = E/E(F^m, Vⁿ).
 "Duality interchanges the roles of F and V."

•
$$D_*(H^*) = (D_*(H))^*$$
.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

An example

Let $H = \mathbb{F}_{p}[t]/(t^{p^{3}})$ with

$$\Delta(t)=t\otimes 1+1\otimes t+\sum_{i=1}^{p-1}\frac{1}{i!(p-i)!}t^{p^2i}\otimes t^{p^2(p-i)}.$$

The choice of $k = \mathbb{F}_p$ is only for ease of notation.

Then $M = E/E(F^3, F^2 - V) = kx \oplus kFx \oplus kF^2x$ as W-modules.

We wish to compute $\operatorname{Hom}_{W}(M, W[p^{-1}]/W) = \operatorname{Hom}_{\mathbb{Z}_{p}}(M, \mathbb{Q}_{p}/\mathbb{Z}_{p}).$

$\operatorname{Hom}_{\mathbb{Z}_p}(E/E(F^3,F^2-V),\mathbb{Q}_p/\mathbb{Z}_p)$

Note that any $\phi : kx \oplus kFx \oplus kF^2x \to \mathbb{Q}_p/\mathbb{Z}_p$ is determined by the images of x, Fx, and F^2x .

Note also that $V(Fx) = V(F^2x) = 0$, which will be useful later.

Since $px = FVx = F(F^2x) = F^3x = 0$,

$$M^*\cong\{(w,y,z)\in (\mathbb{Q}_{
ho}/\mathbb{Z}_{
ho})^3:
ho w,
ho y,
ho z\in\mathbb{Z}_{
ho}\}$$

where $\phi \in M^*$ is given by

$$\phi(x) = w$$

$$\phi(Fx) = y$$

$$\phi(F^2x) = z$$

< 日 > < 同 > < 回 > < 回 > < 回 > <

$$\phi(\mathbf{x}) = \mathbf{w}, \ \phi(\mathbf{F}\mathbf{x}) = \mathbf{y}, \ \phi(\mathbf{F}^2\mathbf{x}) = \mathbf{z}$$

$$M^* \cong \{(w, y, z) \in (\mathbb{Q}_p/\mathbb{Z}_p)^3 : pw, py, pz \in \mathbb{Z}_p\}$$

Now *F* acts on ϕ by

$$(F\phi)(x) = (\phi(Vx))^{\sigma} = (\phi(F^2x))^{\sigma} = z^{\sigma} = z, \ (F\phi)(y) = (F\phi(z)) = 0$$

and *V* acts on ϕ by

~

$$(V\phi)(x) = (\phi(Fx))^{\sigma^{-1}} = y^{\sigma^{-1}} = y$$

 $(V\phi)(Fx) = (\phi(F^2x))^{\sigma^{-1}} = z^{\sigma^{-1}} = z$
 $(V\phi(z)) = 0.$

Thus, F(w, y, z) = (z, 0, 0), V(w, y, z) = (y, z, 0). Clearly, for all u = (w, y, z) we have $V^3 u = 0$ and $V^2 u = Fu$. It follows that $M^* = E/E(V^3, V^2 - F)$.

Exercise 31. Using M^* , give the algebra structure for H^* . (**Hint.** It requires two generators.)

Exercise 32. Using M^* , give the coalgebra structure for H^* .

Exercise 33. What changes if $k \neq \mathbb{F}_p$?

Overview

2 Witt Vectors

- 3 Dieudonné Modules
- Some Examples

5 Duality

< ロ > < 同 > < 回 > < 回 >

More is coming tomorrow.

Thank you.

크

イロト イポト イヨト イヨ