Dieudonné module theory, part II: the classical theory

Alan Koch

Agnes Scott College
May 24, 2016

Outline

(9) Overview
(2) Witt Vectors
(3) Dieudonné Modules
(4) Some Examples
(5) Duality

6 Want More?

Pick a prime $p>2$.

Recall: it is unreasonable to think that every finite abelian Hopf algebra H of p-power rank over an \mathbb{F}_{p}-algebra R can be classified with Dieudonné modules.

Last time, we focused on Hopf algebras with a nice coalgebra structure.

This time, we will make assumptions on both R and H.

The assumptions on R are very restrictive, and the ones on H are more palatable.

The situation du jour (et demain)

Throughout this talk, let $R=k$ be a perfect field of characterisic p.
Any finite k-Hopf algebra H can be written as

$$
H \cong H_{r, r} \otimes H_{r, \ell} \otimes H_{\ell, r} \otimes H_{\ell, \ell}
$$

where

- $H_{r, r}$ and $H_{r, r}^{*}$ are both reduced k-algebras.
- $H_{r, \ell}$ is a reduced and $H_{r, \ell}^{*}$ is a local k-algebra.
- $H_{\ell, r}$ is a local and $H_{r, \ell}^{*}$ is a reduced k-algebra.
- $H_{\ell, \ell}$ and $H_{\ell, \ell}^{*}$ are both local k-algebras.

If $p \nmid \operatorname{dim}_{k} H$ then $H=H_{r, r}$.

$$
H \cong H_{r, r} \otimes H_{r, \ell} \otimes H_{\ell, r} \otimes H_{\ell, \ell}
$$

Reduced k-Hopf algebras are "classified": they correspond to finite groups upon which $\operatorname{Gal}(\bar{k} / k)$ acts continuously.

Then $H_{r, r}$ and $H_{r, \ell}$ are classified, and by duality so is $H_{\ell, r}$.
Thus, the most mysterious Hopf algebras are the ones of the form $H_{\ell, \ell}$.
We will call these "local-local" and assume that all Hopf algebras in this talk are finite, abelian, and local-local over the perfect field k.

If H is local-local, then a result of Waterhouse is that H is a "truncated polynomial algebra", i.e.,

$$
H \cong k\left[t_{1}, \ldots, t_{r}\right] /\left(t_{1}^{p^{n_{1}}}, \ldots, t_{r}^{p_{r}}\right)
$$

so the algebra structure isn't terrible.

Suggested readings

- M. Demazure and P. Gabriel, Groupes Algébriques - Tome 1. Good news: partially translated into English as Introduction to Algebraic Geometry and Algebraic Groups. Bad news: not the part you need (chapter 5).
- A. Grothendieck, Groupes de Barsotti-Tate et Cristaux de Dieudonné.
Explicit connection between Dieudonné modules and Hopf algebras.
- T. Oda, The first de Rham cohomology group and Dieudonné modules. The section on Dieudonné modules gave me my first explicit examples.
- R. Pink, Finite group schemes, https://people.math.ethz.ch/ pink/ftp/FGS/CompleteNotes.pdf. Good intro to Dieudonné modules with proofs (group scheme point of view).

The gist

What is a k-Hopf algebra?

It is a k-algebra and a k-coalgebra with compatible structures.

A Dieudonné module is a single module (over a ring TBD) which encodes both structures.

In Monday's talk, the coalgebra structure was assumed, and the algebra structure was encoded by the action of F on $D_{*}(H)$.

Outline

(1) Overview
(2) Witt Vectors
(3) Dieudonné Modules

4 Some Examples
(5) Duality

6 Want More?

Witt polynomials

For each $n \in \mathbb{Z}^{\geq 0}$, define $\Phi_{n} \in \mathbb{Z}\left[Z_{0}, \ldots, Z_{n}\right]$ by

$$
\Phi_{n}\left(Z_{0}, \ldots, Z_{n}\right)=Z_{0}^{p^{n}}+p Z_{1}^{p^{n-1}}+\cdots+p^{n} Z_{n}
$$

Note: Φ_{n} depends on the choice of prime p, which we assume to be "our" p.

Define polynomials $S_{n}, P_{n} \in \mathbb{Z}\left[X_{0}, \ldots, X_{n} ; Y_{0}, \ldots, Y_{n}\right]$ implicitly by

$$
\begin{aligned}
& \Phi_{n}\left(S_{0}, \ldots, S_{n}\right)=\Phi_{n}\left(X_{0}, \ldots, X_{n}\right)+\Phi_{n}\left(Y_{0}, \ldots, Y_{n}\right) \\
& \Phi_{n}\left(P_{0}, \ldots, P_{n}\right)=\Phi_{n}\left(X_{0}, \ldots, X_{n}\right) \Phi_{n}\left(Y_{0}, \ldots, Y_{n}\right)
\end{aligned}
$$

Fact. Yes, the coefficients are all integers.

$$
\begin{aligned}
& \Phi_{n}\left(Z_{0}, \ldots, Z_{n}\right)=Z_{0}^{p^{n}}+p Z_{1}^{p^{n-1}}+\cdots+p^{n} Z_{n} \\
& \Phi_{n}\left(S_{0}, \ldots, S_{n}\right)=\Phi_{n}\left(X_{0}, \ldots, X_{n}\right)+\Phi_{n}\left(Y_{0}, \ldots, Y_{n}\right) \\
& \Phi_{n}\left(P_{0}, \ldots, P_{n}\right)=\Phi_{n}\left(X_{0}, \ldots, X_{n}\right) \Phi_{n}\left(Y_{0}, \ldots, Y_{n}\right)
\end{aligned}
$$

Example (low hanging fruit)

$$
\begin{aligned}
\Phi_{0}\left(Z_{0}\right) & =Z_{0} \\
S_{0}\left(X_{0} ; Y_{0}\right) & =X_{0}+Y_{0} \\
P_{0}\left(X_{0}, Y_{0}\right) & =X_{0} Y_{0}
\end{aligned}
$$

Exercise 1. Prove:

$$
\begin{aligned}
& S_{1}\left(\left(X_{0}, X_{1}\right) ;\left(Y_{0}, Y_{1}\right)\right)=X_{1}+Y_{1}-\frac{1}{p} \sum_{i=1}^{p-1}\binom{p}{i} X_{0}^{i} Y_{0}^{p-i} \\
& P_{1}\left(\left(X_{0}, X_{1}\right) ;\left(Y_{0}, Y_{1}\right)\right)=X_{0}^{p} Y_{1}+X_{1}^{p} Y_{0}+p X_{1} Y_{1}
\end{aligned}
$$

Let $W(\mathbb{Z})=\left(w_{0}, w_{1}, w_{2}, \ldots\right), w_{i} \in \mathbb{Z}$ for all i. Define addition and multiplication on $W(\mathbb{Z})$ by

$$
\begin{aligned}
\left(w_{0}, w_{1}, \ldots\right)+w\left(x_{0}, x_{1}, \ldots\right) & =\left(S_{0}\left(w_{0} ; x_{0}\right), S_{1}\left(\left(w_{0}, w_{1}\right) ;\left(x_{0}, x_{1}\right)\right), \ldots\right) \\
\left(w_{0}, w_{1}, \ldots\right) \cdot w\left(x_{0}, x_{1}, \ldots\right) & =\left(P_{0}\left(w_{0} ; x_{0}\right), P_{1}\left(\left(w_{0}, x_{1}\right) ;\left(w_{0}, x_{1}\right)\right), \ldots\right)
\end{aligned}
$$

These operations make $W(\mathbb{Z})$ into a commutative ring.

Actually, $W(-)$ is a \mathbb{Z}-ring scheme, meaning that for all \mathbb{Z}-algebras A, $W(A)$ is a ring.

In particular, set $W=W(k)$ and call this the ring of Witt vectors with coefficients in k (or "Witt vectors" for short).

Properties of Witt vectors. Show each of the following:
Exercise 2. W is a ring of characteristic zero.
Exercise 3. W is an integral domain.
Exercise 4. $(1,0,0, \ldots)$ is the multiplicative identity of W.
Exercise 5. $W\left(\mathbb{F}_{p}\right) \cong \mathbb{Z}_{p}$.
Exercise 6. $W\left(\mathbb{F}_{p^{n}}\right)$ is the unramified extension of \mathbb{Z}_{p} of degree n.
Exercise 7. The element $(0,1,0,0 \ldots) \in W$ acts as mult. by p.
Exercise 8. $p^{n} W$ is an ideal of W.
Exercise 9. Let $W_{n}=\left(w_{0}, w_{1}, \ldots, w_{n-1}\right)$. Then W_{n} is a ring with operations induced from W.

Exercise 10. $W / p^{n} W \cong W_{n}$. In particular, $W_{0} \cong k$.

Of particular importance will be two operators F, V on W given by

$$
\begin{aligned}
& F\left(w_{0}, w_{1}, w_{2}, \ldots\right)=\left(w_{0}^{p}, w_{1}^{p}, w_{2}^{p}, \ldots\right) \\
& V\left(w_{0}, w_{1}, w_{2}, \ldots\right)=\left(0, w_{0}, w_{1}, \ldots\right)
\end{aligned}
$$

F is called the Frobenius and V is called the Verschiebung.
Show each of the following:
Exercise 11. $F V=V F=p$ (multiplication by p).
Exercise 12. F, V both act freely on W, only F acts transitively.
Exercise 13. If $w \in p^{n} W$ then $F w, V w \in p^{n} W$. Thus, F and V make sense on W_{n} as well.

Exercise 14. W_{n} is annihilated by V^{n+1}.
Exercise 15. Any $w=\left(w_{0}, w_{1}, w_{2}, \ldots\right) \in W$ decomposes as

$$
\left(w_{0}, w_{1}, w_{2}, \ldots\right)=\sum_{i=0}^{\infty} p^{i}\left(w_{i}^{p^{-i}}, 0,0, \ldots\right)
$$

Outline

(1) Overview

(2) Witt Vectors
(3) Dieudonné Modules

4 Some Examples
(5) Duality

6 Want More?

The Dieudonné ring

Now let w^{σ} be the Frobenius on $w \in W$ (invertible since k is perfect).

Let $E=W[F, V]$ be the ring of polynomials with

$$
F V=V F=p, F w=w^{\sigma} F, w V=V w^{\sigma} ; w \in W
$$

We call E the Dieudonné ring.

Note that E is commutative if and only if $k=\mathbb{F}_{p}$.

One more construction

Let us view W_{n} as a group scheme (as opposed to the ring $W_{n}(k)$).
Let W_{n}^{m} be the $m^{\text {th }}$ Frobenius kernel of the group scheme W_{n}, i.e. for any k-algebra A,

$$
W_{n}^{m}(A)=\left\{\left(a_{0}, a_{1}, \ldots, a_{n-1}\right): a_{i} \in A, a_{i}^{p^{m}}=0 \text { for all } 0 \leq i \leq n-1\right\} .
$$

Some properties of W_{n}^{m} :

- Clearly, $F: W_{n} \rightarrow W_{n}$ restricts to $F: W_{n}^{m} \rightarrow W_{n}^{m}$.
- Also, $V: W_{n} \rightarrow W_{n}$ restricts to $V: W_{n}^{m} \rightarrow W_{n}^{m}$.
- For each k-algebra $A, W(k)$ acts on $W(A)$ through the algebra structure map $k \hookrightarrow A$.
- Every local-local Hopf algebra represents a subgroup scheme of some $\left(W_{n}^{m}\right)^{r}$.

There are maps $\iota: W_{n}^{m} \hookrightarrow W_{n}^{m+1}$ (inclusion) and $\nu: W_{n}^{m} \hookrightarrow W_{n+1}^{m}$ (induced by V) such that

$$
\begin{array}{rll}
W_{n}^{m} & \iota & W_{n}^{m+1} \\
\downarrow \nu & & \nu \downarrow \\
W_{n+1}^{m} & & \iota \\
W_{n+1}^{m+1}
\end{array}
$$

Then $\left\{W_{n}^{m}\right\}$ is a direct system (where the partial ordering $(n, m) \leq\left(n^{\prime}, m^{\prime}\right)$ is given by the conditions $\left.n \leq n^{\prime}, m \leq m^{\prime}\right)$.

Let

$$
\widehat{W}=\lim _{m, n} W_{n}^{m} .
$$

(Not standard notation.)

Let H be a local-local Hopf algebra. Define

$$
D_{*}(H)=\operatorname{Hom}_{k-g r}(\widehat{W}, \operatorname{Spec}(H)) .
$$

The actions of F and V on \widehat{W} induces actions on $D_{*}(H)$, as does the action of $W(k)$.

Thus, $D_{*}(H)$ is an E-module.

Furthermore, $D_{*}(-)$ is a covariant functor, despite the fact this is referred to as "contravariant Dieudonné module theory".

$$
D_{*}(H)=\operatorname{Hom}_{k-g r}(\widehat{W}, \operatorname{Spec}(H)) .
$$

Properties of D_{*} :

- $D_{*}(H)$ is killed by some power of F and V.
- $D_{*}(H)$ is finite length as a W-module.
- length $W_{W} D_{*}(H)=\log _{p} \operatorname{dim}_{k} H$.
- $D_{*}\left(H_{1} \otimes H_{2}\right) \cong D_{*}\left(H_{1}\right) \times D_{*}\left(H_{2}\right)$. $\operatorname{Note} \operatorname{Spec}\left(H_{1} \otimes H_{2}\right) \cong \operatorname{Spec}\left(H_{1}\right) \times \operatorname{Spec}\left(H_{2}\right)$.

Theorem (Main result in Dieudonné module theory)

D_{*} induces a categorical equivalence

$$
\left\{\begin{array}{c}
p \text {-power rank } \\
\text { local-local } \\
k \text {-Hopf algebras }
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { E-modules } \\
\text { of finite length over } W(k) \\
\text { killed by a power of } F \text { and } V
\end{array}\right\} .
$$

We call E-modules satisfying the above Dieudonné modules.

Legal disclaimer

$\left\{\begin{array}{c}E \text {-modules } \\ \text { of finite length over } W(k) \\ \text { killed by a power of } F \text { and } V\end{array}\right\}=\{$ "Dieudonné modules" $\}$

This is not everyone's definition.
Dieudonné modules can also be used to describe

- p-power rank Hopf algebras (local, separable).
- p-divisible groups
- graded Hopf algebras
- primitively generated Hopf algebras
- a slew of other things

Another legal disclaimer

$\left\{\begin{array}{c}E \text {-modules } \\ \text { of finite length over } W(k) \\ \text { killed by a power of } F \text { and } V\end{array}\right\}=\{$ "Dieudonné modules" $\}$

Some literature will describe a Dieudonné module as a triple (M, F, V) where

- M is a finite length $W(k)$-module
- $F: M \rightarrow M$ is a nilpotent σ-semilinear map
- $V: M \rightarrow M$ is a nilpotent σ^{-1}-semilinear map.

This is just a different way to describe the same thing.

A Hopf algebra interpretation?

$$
D_{*}(H)=\operatorname{Hom}_{k-g r}(\widehat{W}, \operatorname{Spec}(H))
$$

Each W_{n}^{m} is an affine group scheme, represented by

$$
H_{m, n}=k\left[t_{0}, \ldots, t_{n-1}\right] /\left(t_{1}^{p^{m}}, t_{2}^{p^{m}}, \ldots, t_{n-1}^{p^{m}}\right)
$$

with comultiplications induced from Witt vector addition:

$$
\Delta\left(t_{i}\right)=S_{i}\left(\left(t_{0} \otimes 1, \ldots, t_{i} \otimes 1\right) ;\left(1 \otimes t_{0}, \ldots, 1 \otimes t_{i}\right)\right)
$$

In theory we could possibly write something like

$$
D_{*}(H)=\operatorname{Hom}_{k-H o p f}\left(H, \underset{m, n}{\lim } H_{m, n}\right) .
$$

However, I have never found this to be helpful.

No wait, come back

Suppose we are given a Dieudonné module. What is the corresponding Hopf algebra?
Suppose $V^{N+1} M=0$. Let $H=k\left[\left\{T_{m}: m \in M\right\}\right]$ subject to the relations

$$
\begin{aligned}
T_{F m} & =\left(T_{m}\right)^{p} \\
T_{m_{1}+m_{2}} & =S_{N}\left(\left(T_{V{ }^{N} m_{1}}, \ldots, T_{V m_{1}}, T_{m_{1}}\right) ;\left(T_{V{ }^{N} m_{2}}, \ldots, T_{V m_{2}}, T_{m_{2}}\right)\right. \\
T_{\left(w_{0}, w_{1}, \ldots\right) m} & =P_{N}\left(\left(w_{0}^{p^{-N}}, \ldots, w_{N}^{p^{-N}}\right) ;\left(T_{V^{N} m}, \ldots, T_{V m}, T_{m}\right),\right. \\
m, m_{1}, m_{2} & \in M,\left(w_{0}, w_{1}, \ldots\right) \in W .
\end{aligned}
$$

Define $\Delta: H \rightarrow H \otimes H$ by
$\Delta\left(T_{m}\right)=S_{N}\left(\left(T_{V^{N} m} \otimes 1, T_{V^{N-1} m} \otimes 1, \ldots, T_{m} \otimes 1\right) ;\left(1 \otimes T_{V^{N} m}, \ldots, 1 \otimes T_{m}\right)\right)$.
Then H is a local-local k-Hopf algebra.

The gist, part 2

$$
\begin{aligned}
T_{F m} & =\left(T_{m}\right)^{p} \\
T_{m_{1}+m_{2}} & =S_{N}\left(\left(T_{V^{N} m_{1}}, \ldots, T_{V m_{1}}, T_{m_{1}}\right) ;\left(T_{V^{N} m_{2}}, \ldots, T_{V m_{2}}, T_{m_{2}}\right)\right. \\
T_{w m} & =P_{N}\left(\left(w_{0}^{p^{-N}}, \ldots, w_{N}^{p^{-N}}\right) ;\left(T_{V^{N} m}, \ldots, T_{V m}, T_{m}\right)\right. \\
\Delta\left(T_{m}\right) & =S_{N}\left(\left(T_{V^{N} m} \otimes 1, \ldots, T_{m} \otimes 1\right) ;\left(1 \otimes T_{V^{N} m}, \ldots, 1 \otimes T_{m}\right)\right) .
\end{aligned}
$$

The action of F describes the (interesting) algebra structure.
The action of V describes the coalgebra structure.

Exercise 16. Show that the N above need not be minimal.
Exercise 17. Let M be a Dieudonné module. Show that $T_{0}=0$.

Outline

(1) Overview
(2) Witt Vectors
(3) Dieudonné Modules
(4) Some Examples
(5) Duality

6 Want More?

$$
\begin{aligned}
T_{F m} & =\left(T_{m}\right)^{p} \\
T_{m_{1}+m_{2}} & =S_{N}\left(\left(T_{V^{N} m_{1}}, \ldots, T_{V m_{1}}, T_{m_{1}}\right) ;\left(T_{V^{N} m_{2}}, \ldots, T_{V m_{2}}, T_{m_{2}}\right)\right. \\
T_{w m} & =P_{N}\left(\left(w_{0}^{p^{-N}}, \ldots, w_{N}^{p^{-N}}\right) ;\left(T_{V^{N} m}, \ldots, T_{V m}, T_{m}\right)\right. \\
\Delta\left(T_{m}\right) & =S_{N}\left(\left(T_{V^{N} m} \otimes 1, \ldots, T_{m} \otimes 1\right) ;\left(1 \otimes T_{V^{N} m}, \ldots, 1 \otimes T_{m}\right)\right) .
\end{aligned}
$$

Example

The simplest possible (nontrivial) E-module is a k-vector space M of dimension 1 with F and V acting trivially.
In other words, $M=E / E(F, V)$. In particular, $N=1$. Let M have k-basis $\{x\}$, and let H be the Hopf algebra with $D_{*}(H)=M$.

Exercise 18. Prove H is generated as a k-algebra by t, where $t=T_{x}$.
Since

$$
t^{p}=\left(T_{x}\right)^{p}=T_{F x}=T_{0}=0
$$

we have $H=k[t] /\left(t^{p}\right)$. Also, by the formulas above, t is primitive.

Primitively generated flashback

Suppose H is primitively generated (and local-local), and let $M=D_{*}(H)$.

Since

$$
\Delta\left(T_{m}\right)=S_{N}\left(\left(T_{V^{N} m} \otimes 1, \ldots, T_{m} \otimes 1\right) ;\left(1 \otimes T_{V^{N} m}, \ldots, 1 \otimes T_{m}\right)\right)
$$

it follows that we may take $N=0$.
Thus $V M=0$, hence M can be viewed as a module over $k[F]$ with

$$
\begin{aligned}
T_{F m} & =\left(T_{m}\right)^{p} \\
T_{m_{1}+m_{2}} & =T_{m_{1}}+T_{m_{2}} \\
T_{w m} & =w_{0} T_{m} .
\end{aligned}
$$

In this case, it's the same module as yesterday.

Example

Let $M=E /\left(F^{m}, V^{\eta}\right)=D_{*}(H)$.
Exercise 19. What is $p M$?
Exercise 20. Exhibit a k-basis for M.
Exercise 21. Prove that

$$
H=k\left[t_{1}, \ldots, t_{n}\right] /\left(t_{1}^{p^{m}}, \ldots, t_{n}^{p^{m}}\right)
$$

Exercise 22. Write out the comultiplication (in terms of Witt vector addition).

Exercise 23. Show that $\operatorname{Spec}(H)=W_{n}^{m}$.

Let $H=k[t] /\left(t^{p^{5}}\right)$ with

$$
\Delta(t)=t \otimes 1+1 \otimes t+\sum_{i=1}^{p-1} \frac{1}{i!(p-i)!} t^{p^{3} i} \otimes t_{1}^{p^{3}(p-i)}
$$

What is $D_{*}(H)$?
Let $M=D_{*}(H)$, and suppose there is an $x \in M$ such that $t=T_{x}$. Then

$$
0=t^{p^{5}}=\left(T_{X}\right)^{p^{5}}=T_{F^{5} x}
$$

so $F^{5} x=0$, from which it follows that $F^{5} M=0$ but $F^{4} M \neq 0$. Also,

$$
\begin{aligned}
\Delta(t) & =S_{1}\left(\left(\left(T_{X}\right)^{p^{3}} \otimes 1, T_{x} \otimes 1\right) ;\left(1 \otimes\left(T_{x}\right)^{p^{3}}, 1 \otimes T_{X}\right)\right) \\
& =S_{1}\left(T_{F^{3} X} \otimes 1, T_{x} \otimes 1\right) ;\left(1 \otimes T_{F^{3} X}, 1 \otimes T_{x}\right)
\end{aligned}
$$

Then $N=1$ (i.e., $V^{2} M=0$) and $V m=F^{3} m$. Thus,

$$
M \cong E / E\left(F^{5}, F^{3}-V, V^{2}\right)=E / E\left(F^{5}, F^{3}-V\right)
$$

This can be confirmed by working backwards.

Let $H=k\left[t_{1}, t_{2}\right] /\left(t_{1}^{p^{2}}, t_{2}^{p^{2}}\right)$ with

$$
\begin{aligned}
& \Delta\left(t_{1}\right)=t_{1} \otimes 1+1 \otimes t_{1} \\
& \Delta\left(t_{1}\right)=t_{2} \otimes 1+1 \otimes t_{2}+\sum_{i=1}^{p-1} \frac{1}{i!(p-i)!} t_{1}^{p i} \otimes t_{1}^{p(p-i)}
\end{aligned}
$$

What is $D_{*}(H)$?
Let $M=D_{*}(H)$, and suppose $x, y \in M$ satisfy $t_{1}=T_{x}, t_{2}=T_{y}$. Clearly, $F^{2} x=F^{2} y=0$ and

$$
\begin{aligned}
\Delta\left(t_{1}\right) & =S_{0}\left(T_{x} \otimes 1 ; 1 \otimes T_{x}\right) \\
& =S_{1}\left(\left(0 \otimes 1, T_{x} \otimes 1\right) ;\left(1 \otimes 0,1 \otimes T_{x}\right)\right) \\
\Delta\left(t_{2}\right) & =S_{1}\left(\left(\left(T_{x}\right)^{p} \otimes 1, T_{y} \otimes 1\right) ;\left(1 \otimes\left(T_{x}\right)^{p}, 1 \otimes T_{y}\right)\right) \\
& =S_{1}\left(\left(T_{F x} \otimes 1, T_{y} \otimes 1\right) ;\left(1 \otimes T_{F x}, 1 \otimes T_{y}\right)\right)
\end{aligned}
$$

Thus $V x=0$ and $V y=F x$. So,

$$
M=E x+E y, F^{2} M=V^{2} M=0, V x=0, F x=V y
$$

Exercises!

Write out the Hopf algebra for each of the following. Be as explicit as you can.

Exercise 24. $M=E /\left(F^{2}, F-V\right)$

Exercise 25. $M=E / E\left(F^{2}, V^{2}\right)$

Exercise 26. $M=E / E\left(F^{2}, p, V^{2}\right)$

Exercise 27.
$M=E x+E y, F^{4} x=0, F^{3} y=0, V x=F^{2} y, V^{2} x=0, V y=0$.

More exercises!

Find the Dieudonné module for each of the following.
Exercise 28. $H=k[t] /\left(t^{p^{4}}\right), t$ primitive.
Exercise 29. $H=k\left[t_{1}, t_{2}\right] /\left(t_{1}^{p^{3}}, t_{2}^{p^{2}}\right), t_{1}$ primitive and

$$
\Delta\left(t_{2}\right)=t_{2} \otimes 1+1 \otimes t_{2}+\sum_{i=1}^{p-1} \frac{1}{i!(p-i)!} t_{1}^{p i} \otimes t_{1}^{p(p-i)} .
$$

Exercise 30. $H=k\left[t_{1}, t_{2}\right] /\left(t_{1}^{p^{3}}, t_{2}^{p^{2}}\right), t_{1}$ primitive and

$$
\Delta\left(t_{2}\right)=t_{2} \otimes 1+1 \otimes t_{2}+\sum_{i=1}^{p-1} \frac{1}{i!(p-i)!} t_{1}^{p^{2} i} \otimes t_{1}^{p^{2}(p-i)} .
$$

Outline

(1) Overview
(2) Witt Vectors
(3) Dieudonné Modules
(4) Some Examples
(5) Duality

6 Want More?

How does duality work?

Very nicely, with the proper definitions.
For an E-module M we define its dual M^{*} to be

$$
M^{*}=\operatorname{Hom}_{W}\left(M, W\left[p^{-1}\right] / W\right)
$$

This is an E-module, where F and V act on $\phi: M \rightarrow W\left[p^{-1}\right] / W$ as follows:

$$
\begin{aligned}
& (F \phi)(m)=(\phi(V m))^{\sigma} \\
& (V \phi)(m)=(\phi(F m))^{\sigma^{-1}}
\end{aligned}
$$

Note. The σ, σ^{-1} make $F \phi, V \phi$ into maps which are W-linear.

$M^{*}=\operatorname{Hom}_{W}\left(M, W\left[p^{-1}\right] / W\right)$

Properties

- If M is a Dieudonné module, so is M^{*}.
- $\left(E / E\left(F^{n}, V^{m}\right)\right)^{*}=E / E\left(F^{m}, V^{n}\right)$. "Duality interchanges the roles of F and V."
- $D_{*}\left(H^{*}\right)=\left(D_{*}(H)\right)^{*}$.

An example

Let $H=\mathbb{F}_{p}[t] /\left(t^{p^{3}}\right)$ with

$$
\Delta(t)=t \otimes 1+1 \otimes t+\sum_{i=1}^{p-1} \frac{1}{i!(p-i)!} t^{p^{2} i} \otimes t^{p^{2}(p-i)}
$$

The choice of $k=\mathbb{F}_{p}$ is only for ease of notation.

Then $M=E / E\left(F^{3}, F^{2}-V\right)=k x \oplus k F x \oplus k F^{2} x$ as W-modules.

We wish to compute $\operatorname{Hom}_{W}\left(M, W\left[p^{-1}\right] / W\right)=\operatorname{Hom}_{\mathbb{Z}_{p}}\left(M, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)$.

$\operatorname{Hom}_{\mathbb{Z}_{p}}\left(E / E\left(F^{3}, F^{2}-V\right), \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)$

Note that any $\phi: k x \oplus k F x \oplus k F^{2} x \rightarrow \mathbb{Q}_{p} / \mathbb{Z}_{p}$ is determined by the images of $x, F x$, and $F^{2} x$.

Note also that $V(F x)=V\left(F^{2} x\right)=0$, which will be useful later.
Since $p x=F V x=F\left(F^{2} x\right)=F^{3} x=0$,

$$
M^{*} \cong\left\{(w, y, z) \in\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{3}: p w, p y, p z \in \mathbb{Z}_{p}\right\}
$$

where $\phi \in M^{*}$ is given by

$$
\begin{aligned}
\phi(x) & =w \\
\phi(F x) & =y \\
\phi\left(F^{2} x\right) & =z
\end{aligned}
$$

$\phi(x)=w, \phi(F x)=y, \phi\left(F^{2} x\right)=z$

$$
M^{*} \cong\left\{(w, y, z) \in\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{3}: p w, p y, p z \in \mathbb{Z}_{p}\right\}
$$

Now F acts on ϕ by

$$
(F \phi)(x)=(\phi(V x))^{\sigma}=\left(\phi\left(F^{2} x\right)\right)^{\sigma}=z^{\sigma}=z,(F \phi)(y)=(F \phi(z))=0
$$

and V acts on ϕ by

$$
\begin{aligned}
(V \phi)(x) & =(\phi(F x))^{\sigma^{-1}}=y^{\sigma^{-1}}=y \\
(V \phi)(F x) & =\left(\phi\left(F^{2} x\right)\right)^{\sigma^{-1}}=z^{\sigma^{-1}}=z \\
(V \phi(z)) & =0
\end{aligned}
$$

Thus, $F(w, y, z)=(z, 0,0), V(w, y, z)=(y, z, 0)$.
Clearly, for all $u=(w, y, z)$ we have $V^{3} u=0$ and $V^{2} u=F u$. It follows that $M^{*}=E / E\left(V^{3}, V^{2}-F\right)$.

$$
H=\mathbb{F}_{p}[t] /\left(t_{p^{3}}\right), M^{*}=E / E\left(V^{3}, V^{2}-F\right)
$$

Exercise 31. Using M^{*}, give the algebra structure for H^{*}. (Hint. It requires two generators.)

Exercise 32. Using M^{*}, give the coalgebra structure for H^{*}.

Exercise 33. What changes if $k \neq \mathbb{F}_{p}$?

Outline

(1) Overview
(2) Witt Vectors
(3) Dieudonné Modules
(4) Some Examples
(5) Duality
(6) Want More?

More is coming tomorrow.

Thank you.

